IS 663 Advanced System Analysis & Design – Spring 2019

Part I: Course and Instructor Information

<table>
<thead>
<tr>
<th>Semester:</th>
<th>Spring 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course name:</td>
<td>Advanced System Analysis & Design</td>
</tr>
<tr>
<td>Course number:</td>
<td>IS 663</td>
</tr>
<tr>
<td>Instructor name:</td>
<td>Vassilka Kirova</td>
</tr>
<tr>
<td>Course location:</td>
<td>CULM 110</td>
</tr>
<tr>
<td>Course Meeting time:</td>
<td>6:00 – 9:05 PM EDT</td>
</tr>
<tr>
<td>Office hours & location:</td>
<td>Monday, 6:30 – 8:30 PM ET - GITS Informatics Department (by appointment); Wednesday, 5:00-6:00 PM - Class room (by appointment)</td>
</tr>
<tr>
<td>Email:</td>
<td>vdkirova@gmail.com; vassilka.kirova@njit.edu</td>
</tr>
</tbody>
</table>

Part II: Course Description

1. Course description:

This course develops the skills necessary to analyze, design and manage the development of enterprise-scale information system solutions, incorporating contemporary methods and effective organizational and global project management practices. It focuses on technical business system analysis and design techniques, and covers key software engineering principles, methods and frameworks, including process models, agile and lean principles, project and risk management, estimation, requirements elicitation and analysis, modeling, system and software architecture, design patterns, and quality systems. Students will actively participate in discussions, review selected articles, participate in team exercises and collaborate on projects involving analysis and prototyping of applications addressing real-world problems and integrating current and emerging technologies.

For the latest course information go to http://njit2.mrooms.net/
The information below should help you plan and organize your preparation during the semester.

2. Prerequisite courses and knowledge:
 - Prerequisite course: IS 631
 - Required background:
 - The students are required to have knowledge of key information systems concept, software development life cycle activities, and project management issues.
 - Good understanding of data modeling techniques and database fundamentals is expected as well.
 - Good understanding of modern trends in business and information analysis, information technology, data modeling, object-oriented principles and agility are a plus
 - Undergraduate software engineering courses provide a good foundation

3. Outcomes expected upon the completion of the course:
 - Good understanding of classical and modern lifecycle models, including agile methods
 - Hands on analysis and specification skills, using methods such as use cases, scenarios, and user stories
 - Good understanding of project management functions, including risk analysis in global and collaborative projects
 - Practical knowledge of estimation techniques
 - Understanding of architecture and design activities as well as the impact and opportunities provided by modern architectures and infrastructures such as SOA and Cloud computing
 - Hands on modeling skills (UML, agile UML)
• Understanding the fundamentals of Quality Assurances and quality frameworks

4. Ways that students will be assessed throughout the course:

• Team project execution and deliverables - content, mastery of methods discussed in class and creativity; team work; research and analysis skills
• Discussions - active participation and moderation of discussions; free sharing of ideas and information related to the discussion topics; systematic progress with paper reading assignments
• Individual assignments - content, understanding of methods discussed in class and their effective user or application to the assignment; research and analysis skills
• Class participation – open contribution to the discussions and exercises, sharing, collaboration
• Final exam – understanding of the course material and demonstrated effective application of the acquired knowledge and skills to solving practical problems

5. Required & Recommended texts:

• Lecture Notes
Lecture notes are the basic course material for this class. The notes are made available on Moodle every semester.
• Text
 o NJIT Bookstore or

• Articles and Discussion Supporting Materials
For the list of readings check the Course Outline available on Moodle as well as Moodle Discussions forum.
• Books Recommended for Extra Reading
 o “Design Patterns / Elements of Reusable Objext Oriented Software,” Erich Gamma, Richard helm, Ralph Johnson, and Vlissides (known as the “Gang of 4” of “GOF”), 1994.

6. Required software/hardware:
Free and open software; NJIT supported tools and hosting environments.

7. Web resources:
See Class information on Moodle (http://njit2.mrooms.net/)
8. Contacting the instructor (including turn-around time for responses)

Vassilka Kirova, Ph.D.
Department of Information Systems
College of Computing Sciences
New Jersey Institute of Technology

Emails: vdkirova@gmail.com and vassilka.kirova@njit.edu (please use subject – IS 663-<additional info> -- for quick response time)

Please make sure to send your email to vassilka.kirova@njit.edu WITH A COPY to vdkirova@gmail.com!
Always use as a subject “IS-663” plus any details you would like to add.

Mailing Address:
Dr. Vassilka Kirova
Department of Informatics, CCS
NJIT, University Heights
Newark, NJ 07102

Office: NJIT, Newark - GITC Department of Informatics (TBD)

<table>
<thead>
<tr>
<th>Part III: Mapping Learning Outcomes to Course Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Learning Outcome</td>
</tr>
<tr>
<td>Good understanding of classical and modern lifecycle models, including agile methods</td>
</tr>
<tr>
<td>Hands on analysis and specification skills, using methods such as use cases, scenarios, user stories and Product Backlogs</td>
</tr>
<tr>
<td>Good understanding of project management functions, including risk analysis in organizational, global and collaborative projects</td>
</tr>
<tr>
<td>Practical knowledge of estimation techniques</td>
</tr>
<tr>
<td>Understanding of architecture and design activities as well as the impact an opportunity provided by modern architectures and infrastructures such as cloud computing and SOA</td>
</tr>
<tr>
<td>Hands on modeling skills (UML, agile UML)</td>
</tr>
<tr>
<td>Understanding the fundamentals of Quality Assurances and quality frameworks</td>
</tr>
</tbody>
</table>
Part IV: Course Outline (Note: this course outline is preliminary and subject to change)

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture/Activity/Discussion</th>
<th>Reading (preliminary)</th>
</tr>
</thead>
</table>
| **Week 1 Jan. 23** | Course logistics and introduction
Course introduction – topics, objectives, SAD/SE state of the art, gaps, industry focus and ongoing research
Reading: 1st reading assigned
Forming Groups for Course Project: teams formed; discussions about topics initiated | Text Book: CH 1
Section 1.2: Software Engineering Ethics
Supporting reading: The Dimensions of Software Engineering Success (see Moodle for details)
General SE information: SIGSOFT Web: http://www.sigsoft.org/
| **Week 2 Jan. 30** | Process models: fundamentals
Review of traditional process models, comparative analysis
Project start:
1) All groups finalized
2) Teams work together to select topic and identify project’s key contributions
3) Project proposal posted on Moodle
Discussion: Evolution of software development practices; review of week’s one reading (paper 1 “Software Chronic Crisis”) – Is there really a crisis today? | Text Book: CH 2
| **Week 3** | Iterative-incremental process models – RUP and Scrum - comparative analysis (cont.)
Project:
1) Discussion and approval of project topics
2) Market and competitors research
In class discussion – projects
Discussion (online): “No Silver Bullet” by Fred Brooks | Text Book: CH 2, 3
Scrum Guides: http://www.scrum.org/Scrum-Guides
Key Scrum Concepts: http://www.scrumalliance.org/pages/what_is_scrum
Lean Software Development: A Tutorial, IEEE Software, Volume 29, Number 5 (September/October 2012) – see Moodle |
| **Week 4** | Product backlogs (PBL) and agile estimation
Project meetings- Progress review | Product Backlogs (PBLs) and user stories (US) tutorials and examples, Mike Cohn, Scrum Alliance: http://www.mountaingoatsoftware.com/agile/user-stories
| **Week 5** | Requirements engineering: concepts, methods and standards
Use Case models
User Stories
Discussion: RUP, Sacrnum, agile principales | Text Book: CH 4
Alistair Cockburn’s Use Cases Reference Page: http://alistair.cockburn.us/Use-cases
Writing Effective Use Cases (see book extract- Chapter 1)
“Structuring Use Cases with Goals” & Use Case Fundamentals, Alistair Cockburn
UC Template |
Week 6
- **Project use cases review (all teams, in class discussion)**
- Nonfunctional requirements
- Specifying the data aspects of requirements analysis (informal and BNF-based definitions)
- Project meetings
- Progress review

Text Book: CH 4

Week 7
- Project management: planning, risk management, estimation
- Discussion: Large Scale Agile (tentative)

Text Book: CH 22, 23

Week 8
- Architecture and design basics; software product lines; design quality.
- Project meetings
- Progress review

Text Book: CH 6, 7, 15, 18

Week 9
Week of March 17th
- No class!

Spring Recess Begins - No Classes Scheduled - University Open

Week 10
March 27
- Model-driven engineering: introduction to Object Oriented Analysis & Design (OOAD) concepts
- Exercises: Simple OOA models explained
- Project due date!

Text Book: CH 5, 7
- Introduction to Agile Modeling, Scott W. Ambler, 2005-2014
- http://www.agilemodeling.com/essays/introductionToAM.htm

Week 11
April 3
- Course project presentations!

Project presentation guidelines and requirements will be provided on Moodle
- Online discussion: Current Best Practices (discussion on Moodle)
- Every student is expected to find a paper, survey or a classification discussing one or several current best practices and to provide an outline and references on Moodle. All students are expected to comment on at least 2 postings by other students.
<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Text Book</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 12</td>
<td>Design heuristics - invited talk (1.5 hours)</td>
<td>Text Book: CH 5, 6, 7</td>
</tr>
<tr>
<td></td>
<td>UML Summary</td>
<td>Design Patterns (Dr. Dennis Mancl, DMTS, Alcatel-Lucent) – one more talk by the same presenters</td>
</tr>
<tr>
<td></td>
<td>Discussion: (TBD)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start of individual assignment 2</td>
<td></td>
</tr>
<tr>
<td>Week 13</td>
<td>Trends in software architecture and technology: DevOps, cloud, etc.</td>
<td>Text Book: CH 6, 7, 15, 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See also IEEE Computer, March 2011 (an issue dedicated to Cloud Computing)</td>
</tr>
<tr>
<td>Week 14</td>
<td>Tentative: New trends in Quality Management</td>
<td>Text Book: CH 24</td>
</tr>
<tr>
<td></td>
<td>Quality and improvement frameworks (e.g., ISO 9000, CMMI, PSP, TSP, Six Sigma, etc.)</td>
<td>Reading (See Exam Preparation page in Moodle, for all papers, exercises and examples)</td>
</tr>
<tr>
<td></td>
<td>Course summary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Discussion (Tentative): CMMI – is it still applicable?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course wrap-up and Q&A, Exam Preparation</td>
<td></td>
</tr>
<tr>
<td>Week 15</td>
<td>Final Exam</td>
<td>Closed book, comprehensive, 2 hours</td>
</tr>
<tr>
<td>May 1st</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assessment Item | Percentage of final grade
---|---
Team Project | 40%
Individual Assignment | 10%
Final Exam (Comprehensive, closed book) | 50%
Extra Credits | Accumulated separately for active participation in class discussions, Moodle-based discussions, moderation, etc.

Grade policy (approximate): A (95%-100%), B+ (85%-94.9%), B (75%-84.9%)

Part VI: Delivery Mechanism

The following delivery mechanisms will be utilized:

- Face-to-face lectures
- Moodle: http://moodle.njit.edu
- NJIT on iTunes U: http://itunes.njit.edu
- Online resources (other than iTunes):
- Other (see below):

Part VII: Plagiarism and Academic Integrity

The approved "University Code on Academic Integrity" is currently in effect for all courses. Should a student fail a course due to a violation of academic integrity, they will be assigned the grade of "XF" rather than the "F" and this designation will remain permanently on their transcript.

All students are encouraged to look over the [University Code on Academic Integrity](http://www.njit.edu/academic的办法) and understand this document. Students are expected to uphold the integrity of this institution by reporting any violation of academic integrity. The identity of the student filing the report will be kept anonymous.

NJIT will continue to educate top tier students that are academically sound and are self-disciplined to uphold expected standards of professional integrity. **Academic dishonesty will not be tolerated at this institution.**

Part VIII: Getting Help - General

The IST Helpdesk is the central hub for all information related to computing technologies at NJIT. This includes being the first point of contact for those with computing questions or problems.

There are three ways to contact the Helpdesk:

1. Call 973-596-2900. Monday - Friday 8 am - 7 pm.
2. Go to Student Mall Room 48. Monday - Friday 8 am - 7 pm
3. Log a Help Desk Service Request online - https://ist.njit.edu/support/contactus.php

Part IX: Getting Help - Moodle

In addition to the Helpdesk NJIT has a number of resources available to help you learn/use Moodle. Please be aware of the following: